THE MEDICAL EXPANSION, LIFE-EXPECTANCY AND ENDOGENOUS DIRECTED TECHNICAL CHANGE

Leon Huetsch^a Dirk Krueger^b Alexander Ludwig^c

^aUniversity of Pennsylvania

^bUniversity of Pennsylvania, CEPR, CFS, NBER and Netspar

^cGoethe University Frankfurt & ICIR, CEPR and Netspar

June 02, 2023 III Catalan Economic Society Congress Barcelona

Motivation and Research Objective

- Facts: Three Phases of Health and Medical Development
 - 1. Life Expectancy at Age 20 flat until about 1840.
 - 2. Life Expectancy at Age 20 \uparrow since about 1840.
 - Emergence of Modern Health Sector ca. 1920-40: Investment ↑, Employment Share ↑, R&D Share ↑, Price of Health Goods ↑

Motivation and Research Objective

- Facts: Three Phases of Health and Medical Development
 - 1. Life Expectancy at Age 20 flat until about 1840.
 - 2. Life Expectancy at Age 20 \uparrow since about 1840.
 - Emergence of Modern Health Sector ca. 1920-40: Investment ↑, Employment Share ↑, R&D Share ↑, Price of Health Goods ↑
 - Objective: Quantitative theory, predict future, evaluate policies

Motivation and Research Objective

- Facts: Three Phases of Health and Medical Development
 - 1. Life Expectancy at Age 20 flat until about 1840.
 - 2. Life Expectancy at Age 20 \uparrow since about 1840.
 - Emergence of Modern Health Sector ca. 1920-40: Investment ↑, Employment Share ↑, R&D Share ↑, Price of Health Goods ↑
- Objective: Quantitative theory, predict future, evaluate policies
- Building Blocks:
 - 1. Life Cycle: Diamond (1965)
 - 2. Endogenous Health Investment and Longevity: Grossman (1972)
 - 3. Endogenous Directed Technical Change: Aghion & Howitt (1992)

Modeling Approach

- Households:
 - 2-period lived, endogenous survival in 2nd period.
 - Choices: consumption-savings, health spending.
 - Two health goods: basic hygiene & modern health services.

Modeling Approach

- Households:
 - 2-period lived, endogenous survival in 2nd period.
 - Choices: consumption-savings, health spending.
 - Two health goods: basic hygiene & modern health services.
- Firms:
 - Two sectors: health goods & final goods
 - Monopolistic competition in intermediate inputs ⇒ Profits
 - Endogenous R&D: \Rightarrow higher quality intermediates \Rightarrow Profits.
- Quantitative implementation: Calibration to initial conditions, broad trends in US data.

Main Mechanism

Phase 1: Low productivity & Low Income ⇒ No Health Spending.

Main Mechanism

- Phase 1: Low productivity & Low Income ⇒ No Health Spending.
- Phase 2: Productivity growth in basic goods sector \Rightarrow Income \uparrow

= Kick-off: Basic health spending \uparrow , life expectancy \uparrow .

Main Mechanism

- Phase 1: Low productivity & Low Income ⇒ No Health Spending.
- Phase 2: Productivity growth in basic goods sector ⇒ Income ↑ => Kick-off: Basic health spending ↑, life expectancy ↑.
- Phase 3: Further income \u03c6, non-homotheticity in health spending:
 - => Health spending \uparrow
 - => Redirection of techn. progress to modern health sector.
 - = Quality in modern health sector \uparrow , price of health goods \uparrow .
 - => Convergence to interior BGP.

Results Today

- Stylized Facts
- Construction & calibration of simple, illustrative model.
- Calibrated model results: Model
 - replicates facts qualitatively
 - fits the data quantitatively
- Health Policy reforms: not yet today.

Related Literature

Aghion-Howitt meets Grossman meets Diamond

Diamond (1965), Grossman (1972), Aghion and Howitt (1992, 1998)

Life expectancy, human capital & technological progress

Cervellati & Sunde (2005), Hejkal, Ravikumar & Vandenbroucke (2022)

Normative analyses of optimal health & R&D spending shares

Hall and Jones (2007), Jones (2004, 2016)

Reasons for growth of health spending

Anderson et al. (2003), Fonseca et al. (2013), Zhao (2014), Hollingsworth et al. (2022)

Health spending, R&D & feedback

Frankovic and Kuhn (2018a,b), Böhm et al. (2018)

Outline

Introduction

Facts

Economic Model

- Households Firms
- Equilibrium

Calibration and Results

Conclusion

Remaining Life Expectancy at Age 0

Kick-off after 1850

Source: Historical Life Expectancy Data (Haines, Hacker 2010), Human Life-Table Database, Human Mortality Database.

Remaining Cohort Life Expectancy at Age 20

Increased life expectancy at age 20: Takeoff about 1840.

 Source: Historical Life Expectancy Data (Haines, Hacker 2010), Human Life-Table Database, Human Mortality Database.

Cohort Life Expectancy: Kick-Off I

Increased life expectancy at age 20: Takeoff ca. 1840.

Source: Hacker (2010), Human Life-Table Database.

Cohort Life Expectancy: Kick-Off II

Remaining cohort LE slightly

- concave at age 20
- convex at age 60: importance of modern health goods?

Source: Human Life-Table Database, Human Mortality Database.

Per Capita Income Growth

Per capita income (log scale) started increasing in about 1820

Constant growth at about 2% annually

Health Expenditure & Output Share

- Health expenditure share ↑
- Output share ↑ since WW.II
- Widespread use of penicillin since WW.II

Health Employment Share

Huetsch/Krueger/Ludwig: Life Expectancy & Techn. Change

Relative Price of Health Goods

Increase of relative price of health goods & services

Quality adjustment?

Outline

Introduction

Facts

Economic Model

Households Firms Equilibrium

Calibration and Results

Conclusion

- ► Households:
 - 2-period lived, endogenous survival in 2nd period.
 - Consumption-savings choice
 - Demand: basic food & hygiene goods & modern health goods.

- Households:
 - 2-period lived, endogenous survival in 2nd period.
 - Consumption-savings choice
 - Demand: basic food & hygiene goods & modern health goods.
- Firms and Technology:
 - Two final goods sectors: modern health goods & generic consumption goods (includes hygiene & food).
 - ► Both sectors: continuum of intermediate inputs. Imperfect substitution & monopolistic competition ⇒ Profits
 - Endogenous R&D: \Rightarrow higher quality of intermediates \Rightarrow Profits.
 - ► Endogenous income growth through quality ↑ in both sectors.

- Households:
 - 2-period lived, endogenous survival in 2nd period.
 - Consumption-savings choice
 - Demand: basic food & hygiene goods & modern health goods.
- Firms and Technology:
 - Two final goods sectors: modern health goods & generic consumption goods (includes hygiene & food).
 - ► Both sectors: continuum of intermediate inputs. Imperfect substitution & monopolistic competition ⇒ Profits
 - Endogenous R&D: \Rightarrow higher quality of intermediates \Rightarrow Profits.
 - Endogenous income growth through quality ↑ in both sectors.
- SOE: interest rate $R_t = R$ exogenous, constant.

• consumption-savings (c_{t+1}, s_t) , health investment (i_t, i_{ht}, i_{ft}) , given prices p_t, R .

- consumption-savings (c_{t+1}, s_t) , health investment (i_t, i_{ht}, i_{ft}) , given prices p_t, R .
- Utility from old-age consumption and survival:

$$\psi(i_t)u(c_{t+1}) = \psi(i_t)\left(\frac{c_{t+1}^{1-\sigma}}{1-\sigma} + b\right)$$

No suicide condition: *b* sufficiently large (required if $\sigma \ge 1$).

- consumption-savings (c_{t+1}, s_t) , health investment (i_t, i_{ht}, i_{ft}) , given prices p_t, R .
- Utility from old-age consumption and survival:

$$\psi(i_t)u(c_{t+1}) = \psi(i_t)\left(\frac{c_{t+1}^{1-\sigma}}{1-\sigma} + b\right)$$

- No suicide condition: *b* sufficiently large (required if $\sigma \ge 1$).
- Survival probability increases in *i_t*:

$$\psi(i_t) = 1 - (1 + i_t)^{-\xi}.$$

- consumption-savings (c_{t+1}, s_t) , health investment (i_t, i_{ht}, i_{ft}) , given prices p_t, R .
- Utility from old-age consumption and survival:

$$\psi(i_t)u(c_{t+1}) = \psi(i_t)\left(\frac{c_{t+1}^{1-\sigma}}{1-\sigma} + b\right)$$

- No suicide condition: *b* sufficiently large (required if $\sigma \ge 1$).
- Survival probability increases in *i*_t:

$$\psi(i_t) = 1 - (1 + i_t)^{-\xi}.$$

Health investment quasi-linear in basic, modern health goods:

$$i_t = \eta i_{ht} + (\nu + i_{ft})^{\zeta}$$

• Note that $\psi'(i_{ht} = i_{ft} = 0) < \infty$ but $u'(c_{t+1} = 0) = \infty$.

- consumption-savings (c_{t+1}, s_t) , health investment (i_t, i_{ht}, i_{ft}) , given prices p_t, R .
- Utility from old-age consumption and survival:

$$\psi(i_t)u(c_{t+1}) = \psi(i_t)\left(\frac{c_{t+1}^{1-\sigma}}{1-\sigma} + b\right)$$

- No suicide condition: *b* sufficiently large (required if $\sigma \ge 1$).
- Survival probability increases in *i*_t:

$$\psi(i_t) = 1 - (1 + i_t)^{-\xi}.$$

Health investment quasi-linear in basic, modern health goods:

$$i_t = \eta i_{ht} + (\nu + i_{ft})^{\zeta}$$

Note that ψ'(i_{ht} = i_{ft} = 0) < ∞ but u'(c_{t+1} = 0) = ∞.
Budget constraints:

$$p_t i_{ht} + i_{ft} + s_t := e_t + s_t = w_t + T_t := x_t$$
$$c_{t+1} = Rs_t$$

Suppose sequence of prices & cash at hand $\{p_t, x_t\}$ satisfy

 $x_{t+1} > x_t, p_{t+1} < p_t.$

Suppose sequence of prices & cash at hand $\{p_t, x_t\}$ satisfy

 $x_{t+1} > x_t, p_{t+1} < p_t.$

Then there exist time thresholds $0 < T_1 < T_2 < \infty$ such that

1. Phase 1:
$$\forall t < T_1$$
: $i_t = i_{ft} = i_{ht} = 0$, $\psi(i_t) = \psi(0) \& c_{t+1}^o = Rx_t$.

Suppose sequence of prices & cash at hand $\{p_t, x_t\}$ satisfy

 $x_{t+1} > x_t, p_{t+1} < p_t.$

Then there exist time thresholds $0 < T_1 < T_2 < \infty$ such that

1. Phase 1:
$$\forall t < T_1$$
: $i_t = i_{ft} = i_{ht} = 0$, $\psi(i_t) = \psi(0) \& c_{t+1}^o = Rx_t$.

2. Phase 2: $\forall t \in [T_1, T_2)$: $i_t = i_{ft} > 0$, $i_{ht} = 0 \& \psi(i_t) > \psi(0)$. Life expectancy \uparrow : better basic hygiene, no modern health sector.

Suppose sequence of prices & cash at hand $\{p_t, x_t\}$ satisfy

 $x_{t+1} > x_t, p_{t+1} < p_t.$

Then there exist time thresholds $0 < T_1 < T_2 < \infty$ such that

1. Phase 1:
$$\forall t < T_1$$
: $i_t = i_{ft} = i_{ht} = 0$, $\psi(i_t) = \psi(0) \& c_{t+1}^o = Rx_t$.

2. Phase 2: $\forall t \in [T_1, T_2)$: $i_t = i_{ft} > 0$, $i_{ht} = 0 \& \psi(i_t) > \psi(0)$. Life expectancy \uparrow : better basic hygiene, no modern health sector.

3. Phase 3: For all $t \ge T_2$ we have $i_{tt} > 0$ & $i_{ht} > 0$ as well as $\psi(i_t) > \psi(0)$. Life expectancy \uparrow , also modern health goods \uparrow .

Suppose sequence of prices & cash at hand $\{p_t, x_t\}$ satisfy

 $x_{t+1} > x_t, p_{t+1} < p_t.$

Then there exist time thresholds $0 < T_1 < T_2 < \infty$ such that

- 1. Phase 1: $\forall t < T_1$: $i_t = i_{tt} = i_{ht} = 0$, $\psi(i_t) = \psi(0) \& c^o_{t+1} = Rx_t$.
- 2. Phase 2: $\forall t \in [T_1, T_2)$: $i_t = i_{ft} > 0$, $i_{ht} = 0 \& \psi(i_t) > \psi(0)$. Life expectancy \uparrow : better basic hygiene, no modern health sector.
- 3. Phase 3: For all $t \ge T_2$ we have $i_{ft} > 0$ & $i_{ht} > 0$ as well as $\psi(i_t) > \psi(0)$. Life expectancy \uparrow , also modern health goods \uparrow .

4. BGP w/ constant
$$\frac{e}{x} = \frac{p \cdot i_h}{x} > 0, \frac{s}{x} > 0, \frac{c}{x} > 0 \& p > 0.$$

Production Side: Final Goods Production Firms

► Perfectly competitive final goods producers with CRTS technology in both sectors *j* ∈ {*f*, *h*}:

$$y_{jt} = \left(\int_0^1 q_{jit}^{1-\alpha} y_{jit}^{\alpha}\right) I_{jt}^{1-\alpha}$$

- Firms take as given: quality q_{jit} , prices p_{jit} , p_{jt} .
- Choices: y_{jt}, l_{jt}, y_{jit}

Production Side: Final Goods Production Firms

► Perfectly competitive final goods producers with CRTS technology in both sectors *j* ∈ {*f*, *h*}:

$$y_{jt} = \left(\int_0^1 q_{jit}^{1-\alpha} y_{jit}^{\alpha}\right) I_{jt}^{1-\alpha}$$

- Firms take as given: quality q_{jit}, prices p_{jit}, p_{jt}.
- Choices: y_{jt}, l_{jt}, y_{jit}
- FOC's for y_{iit} delivers inverse demand function for intermediates:

$$p_{jit} = \alpha p_{jt} \left(\frac{q_{jit}I_{jt}}{y_{jit}}\right)^{1-\alpha}$$

Intermediate Inputs: Monopolistic Competition

- Each variety $i \in [0, 1]$ is produced by a monopolist.
- ▶ Production function: $y_{jit} = k_{jit}$, full depreciation of capital k_{jit} .
- Firms take as given: inverse demand function & *R*.

Intermediate Inputs: Monopolistic Competition

- Each variety $i \in [0, 1]$ is produced by a monopolist.
- ▶ Production function: $y_{jit} = k_{jit}$, full depreciation of capital k_{jit} .
- Firms take as given: inverse demand function & R.
- Profit maximization:

$$\pi_{jit} = \max_{k_{jit}} \left\{ \left[p_{jt} \alpha q_{jit}^{1-\alpha} k_{jit}^{\alpha-1} l_{jt}^{1-\alpha} \right] k_{jit} - Rk_{jit} \right\}$$

Intermediate Inputs: Monopolistic Competition

- Each variety $i \in [0, 1]$ is produced by a monopolist.
- ▶ Production function: $y_{jit} = k_{jit}$, full depreciation of capital k_{jit} .
- Firms take as given: inverse demand function & R.
- Profit maximization:

$$\pi_{jit} = \max_{k_{jit}} \left\{ \left[\boldsymbol{p}_{jt} \alpha \boldsymbol{q}_{jit}^{1-\alpha} \boldsymbol{k}_{jit}^{\alpha-1} \boldsymbol{l}_{jt}^{1-\alpha} \right] \boldsymbol{k}_{jit} - \boldsymbol{R} \boldsymbol{k}_{jit} \right\}$$

Solution: constant markup over marginal cost *R*, positive profits:

$$p_{jit} = rac{1}{lpha} R > R, \quad \pi_{jit} = rac{1-lpha}{lpha} R k_{jit} > 0$$

Firms: Aggregating the Production Sector

From intermediate goods producers' FOC: For all *i* ∈ [0, 1],

$$\frac{k_{jit}}{q_{jit}}=\frac{k_{jt}}{q_{jt}},$$

where $q_{jt} = \int_0^1 q_{jit} di \& k_{jt} = \int_0^1 k_{jit} di$.

Firms: Aggregating the Production Sector

From intermediate goods producers' FOC: For all $i \in [0, 1]$,

$$\frac{k_{jit}}{q_{jit}}=\frac{k_{jt}}{q_{jt}},$$

where
$$q_{jt} = \int_0^1 q_{jit} di \& k_{jt} = \int_0^1 k_{jit} di$$
.

Aggregation in each sector:

$$y_{jt} = k_{jt}^{\alpha} \left(q_{jt} I_{jt} \right)^{1-\alpha}$$

Distribution of income:

$$\boldsymbol{\rho}_{jt}\boldsymbol{y}_{jt} = \left[(1-\alpha) + \alpha^2 + \alpha(1-\alpha) \right] \boldsymbol{\rho}_{jt}\boldsymbol{y}_{jt} = \boldsymbol{w}_t \boldsymbol{I}_{jt} + \boldsymbol{R}\boldsymbol{k}_{jt} + \pi_{jt}$$

R&D Production & Technological Progress

- R&D entrepreneur per variety i: resources z_{jit} on innovation.
- Probability of successful innovation:

$$\phi(\mathbf{z}_{jit}; \mathbf{I}_{jt}, \mathbf{q}_{jit-1}) = \min\left[\frac{\varphi}{\mathbf{I}_{jt}} \left(\frac{\mathbf{z}_{jit}}{\lambda \mathbf{q}_{jit-1}}\right)^{\gamma}, \mathbf{1}\right]$$

- Successful innovation: quality improvement $\lambda > 1$ so that $q_{jit} = \lambda q_{jit-1}$.
- Successful innovator: one period monopolist for *i*: Profits π_{jit}.

R&D Production & Technological Progress

- R&D entrepreneur per variety i: resources z_{jit} on innovation.
- Probability of successful innovation:

$$\phi(\mathbf{z}_{jit}; \mathbf{I}_{jt}, \mathbf{q}_{jit-1}) = \min\left[\frac{\varphi}{\mathbf{I}_{jt}} \left(\frac{\mathbf{z}_{jit}}{\lambda \mathbf{q}_{jit-1}}\right)^{\gamma}, \mathbf{1}\right]$$

- Successful innovation: quality improvement $\lambda > 1$ so that $q_{jit} = \lambda q_{jit-1}$.
- Successful innovator: one period monopolist for i: Profits π_{jit}.
- R&D entrepreneur's problem:

$$\max_{\mathbf{Z}_{jit}} \left\{ \pi_{jit} \cdot \phi(\mathbf{Z}_{jit}; \mathbf{I}_{jt}, \mathbf{q}_{jit-1}) - \mathbf{Z}_{jit} \right\}$$

Solution $z_{jit} = \Phi(R, p_{jt}, I_{jt})\lambda q_{jit-1}$.

R&D Production & Technological Progress

- R&D entrepreneur per variety i: resources z_{jit} on innovation.
- Probability of successful innovation:

$$\phi(\mathbf{Z}_{jjt}; \mathbf{I}_{jt}, \mathbf{q}_{jit-1}) = \min\left[\frac{\varphi}{\mathbf{I}_{jt}} \left(\frac{\mathbf{Z}_{jit}}{\lambda \mathbf{q}_{jit-1}}\right)^{\gamma}, \mathbf{1}\right]$$

- Successful innovation: quality improvement $\lambda > 1$ so that $q_{jit} = \lambda q_{jit-1}$.
- Successful innovator: one period monopolist for *i*: Profits π_{jit}.
- R&D entrepreneur's problem:

$$\max_{Z_{jit}} \left\{ \pi_{jit} \cdot \phi(Z_{jit}; I_{jt}, q_{jit-1}) - Z_{jit} \right\}$$

Solution $z_{jit} = \Phi(R, p_{jt}, l_{jt})\lambda q_{jit-1}$.

Varieties *i* w/ unsuccessful innovations: quality q_{jit} = q_{jit-1}, randomly selected entrepreneur eats profits π_{jit}.

Firms: Aggregation of R&D & Economic Growth

• Since
$$\frac{z_{jit}}{\lambda q_{jit-1}} = \Phi(R, p_{jt}, l_{jt})$$
 constant across *i*:

$$\mu_{jt} = \frac{\varphi}{I_{jt}} \left(\frac{Z_{jit}}{\lambda q_{jit-1}} \right)^{\gamma} = \frac{\varphi}{I_{jt}} \left(\Phi(\boldsymbol{R}, \boldsymbol{p}_{jt}, I_{jt}) \right)^{\gamma}$$

Firms: Aggregation of R&D & Economic Growth

Since
$$\frac{z_{jit}}{\lambda q_{jit-1}} = \Phi(R, p_{jt}, l_{jt})$$
 constant across *i*:

$$\mu_{jt} = \frac{\varphi}{I_{jt}} \left(\frac{Z_{jit}}{\lambda \boldsymbol{q}_{jit-1}} \right)^{\gamma} = \frac{\varphi}{I_{jt}} \left(\Phi(\boldsymbol{R}, \boldsymbol{p}_{jt}, \boldsymbol{I}_{jt}) \right)^{\gamma}$$

Quality improvements as engine of growth:

$$q_{jt} = \mu_{jt}\lambda q_{jt-1} + (1-\mu_{jt})q_{jt-1}$$

Growth rate in sector j:

$$g_{jt}=\frac{q_{jt}}{q_{jt-1}}=1+(\lambda-1)\mu_{jt}.$$

Huetsch/Krueger/Ludwig: Life Expectancy & Techn. Change

Price & Quality of Health Goods

- Good *f* is the numeraire: $p_{ft} = 1$ for all *t*.
- Relative price of health goods per health efficiency unit i_{ht}:

$$p_{ht} =: p_t = \left(\frac{q_{ft}}{q_{ht}}\right)^{1-\alpha}$$

• Relative price, quality adjustment: $p_t \frac{q_{ht}}{q_t}$

Balanced Growth Path (BGP) and Transition

- lnterior BGP: quality (q_{ft}, q_{ht}) , x_t, w_t, T_t grow at rate g.
- Constant prices $R, p_t = p$. Constant shares:

$$\frac{e_t}{x_t} = \frac{p_t i_{ht} + i_{ft}}{x_t} = \frac{p_t i_{ht}}{x_t} = \vartheta, \frac{s_t}{x_t} = 1 - \vartheta, \frac{c_{t+1}}{x_t} = R(1 - \vartheta)$$

▶ BGP with interior share $\vartheta = \frac{e}{x} \in (0, 1)$ exists iff $\sigma = 1 + \xi$.

Balanced Growth Path (BGP) and Transition

- lnterior BGP: quality (q_{ft}, q_{ht}) , x_t, w_t, T_t grow at rate g.
- Constant prices $R, p_t = p$. Constant shares:

$$\frac{e_t}{x_t} = \frac{p_t i_{ht} + i_{ft}}{x_t} = \frac{p_t i_{ht}}{x_t} = \vartheta, \frac{s_t}{x_t} = 1 - \vartheta, \frac{c_{t+1}}{x_t} = R(1 - \vartheta)$$

- ▶ BGP with interior share $\vartheta = \frac{e}{x} \in (0, 1)$ exists iff $\sigma = 1 + \xi$.
- ► Why? FOC w.r.t. $\vartheta_t = \frac{e_t}{x_t}$ equates marginal benefit of health spending (longer life) to cost (reduced consumption):

$$\max_{\vartheta_t} \left(1 - \frac{1}{(1 + i_t(\vartheta_t x_t))^{\xi}} \right) \left(\frac{(Rx_t(1 - \vartheta_t))^{1 - \sigma}}{1 - \sigma} + b \right)$$

For (c_{t+1}, e_t) to grow at same rate: $\sigma = 1 + \xi$.

Transition to BGP

State of the economy $(q_{ht-1}, q_{ft-1}, n_t, s_{t-1})$

• Given state (& $R_t = R$): static equilibrium, determine p_t (or $\frac{l_t}{l_{ht}}$).

Transition to BGP

State of the economy $(q_{ht-1}, q_{ft-1}, n_t, s_{t-1})$

- Given state (& $R_t = R$): static equilibrium, determine p_t (or $\frac{l_t}{l_{bt}}$).
- Assumption $\sigma = 2$, thus $\xi = 1$: closed-form for interior $\vartheta_t \Rightarrow$

demand for health goods \Rightarrow update of state \Rightarrow (n_{t+1} , s_t).

Transition to BGP

State of the economy $(q_{ht-1}, q_{ft-1}, n_t, s_{t-1})$

• Given state (& $R_t = R$): static equilibrium, determine p_t (or $\frac{l_t}{l_{bt}}$).

• Assumption $\sigma = 2$, thus $\xi = 1$: closed-form for interior $\vartheta_t \Rightarrow$

demand for health goods \Rightarrow update of state \Rightarrow (n_{t+1} , s_t).

▶ Relative price p_t determines I_{ft} , I_{ht} , μ_{ft} , μ_{ht} .

• Update of state:
$$\Rightarrow$$
 (q_{ht}, q_{ft}).

Extensions for Quantitative Analysis

• Labor intensive health sector: $\alpha_h = 0.22, \alpha_f = 0.33$. (Acemoglu and

Guerrieri 2008).

- **b** Differential improvement factors: λ_i
- Sector-specific parameters: plausible size of both sectors

Extensions for Quantitative Analysis

• Labor intensive health sector: $\alpha_h = 0.22, \alpha_f = 0.33$. (Acemoglu and

Guerrieri 2008).

- Differential improvement factors: λ_i
- Sector-specific parameters: plausible size of both sectors
- ► Key optimality conditions (& requirement for BGP) qualitatively unchanged (still need $\Rightarrow \sigma = 1 + \xi$). Currently $\sigma = 2$.

Outline

Introduction

Facts

Economic Model

Households Firms Equilibrium

Calibration and Results

Conclusion

Thought Experiment

Basic Question: Can the model replicate basic empirical facts?

- Life expectancy at age 20
- Existence & size of modern health sector
- Relative price of health goods

Thought Experiment

Basic Question: Can the model replicate basic empirical facts?

- Life expectancy at age 20
- Existence & size of modern health sector
- Relative price of health goods
- 40 year model periods: young 20-59, old 59-100
- Six periods: 1820 (phase 1), 1860, 1900 (phase 2),

1940, 1980, 2020 (phase 3).

► Future Question: (Optimal) role of government in health R&D.

Calibration Strategy

- Value of life b: kick-off of basic health good spending
- Quality gap: kick-off of modern health good spending
- ► IES $1/\sigma = 0.5$ standard. $\Rightarrow \xi = 1$.
- Minimum survival probability: adult remaining life expectancy of 40.2 years in 1790.

Calibration Strategy

- Value of life b: kick-off of basic health good spending
- Quality gap: kick-off of modern health good spending
- ► IES $1/\sigma = 0.5$ standard. $\Rightarrow \xi = 1$.
- Minimum survival probability: adult remaining life expectancy of 40.2 years in 1790.
- Growth factor λ_f : overall GDP growth
- Growth factor λ_h : relative growth of modern health sector
- lunovation parameters γ , φ : relative R&D spending (not yet).

Parameters

SOE	
Rate of return R-1	1.5 (\approx 1 % annually)
Initial Condition	
Quality gap $\frac{q_{h0}}{q_{t0}}$	0.027192
Households	
Value of Life b	7.03
IES 1/ σ	0.5
Tail parameter, survival function ξ	1
Min. surv. prob. at i = 0, ν^{ζ}	0.020669
Scale parameter, modern health investment η	5
Firms	
Capital elasticities [$\alpha_{f,1940}$, $\alpha_{f,2020}$, $\alpha_{h,1940}$, $\alpha_{h,2020}$]	[0.33,0.33,0.025,0.2]
Growth factor $[\lambda_f, \lambda_h]$	[115,3]
Innovation probability, curvature [γ_f , γ_h]	[0.5,0.5]
Innovation probability, scale $[\varphi_f, \varphi_h]$	[0.5,0.5]

Determination of BGP: Demand & Supply

Unique BGP equilibrium

Huetsch/Krueger/Ludwig: Life Expectancy & Techn. Change

Comparison to Data: Log GDP per Capita

Comparison looks good (easy to match)

Huetsch/Krueger/Ludwig: Life Expectancy & Techn. Change

Transition: Life Expectancy at Age 20

Constant LE prior to kick-off, then increasing.

Comparison to Data: Health Employment Share

Matches increase qualitatively, but too rapid quantitatively

Comparison to Data: Health Output Share

Matches increase qualitatively, but too rapid quantitatively

Comparison to Data: Price of Health Goods

• $p\frac{q_{ht}}{a_{t}}$: Right qualitatively, misses acceleration of prices in data.

Decomposition of Life Expectancy at Age 20

Growing contribution of modern health after 2nd kickoff

Outline

Introduction

Facts

Economic Model

Households

Firms

Equilibrium

Calibration and Results

Conclusion

Conclusion: What We Have

Endogenous growth model with a health sector generating...

- ... kick-off of adult life expectancy and (later) modern medicine
- ... positive trend of health spending share
- ... positive trend of health employment, R&D spending shares
- ... increasing relative price of health
- …continuously increasing life-expectancy in 20-th century

Conclusion: Next Step and Outlook

- Quantitative evaluation: reforms to health care & public R&D policies
- Model elements:
 - Life Cycle Model
 - Explicit model of health accumulation and frailty
 - consumption, savings, health investment, & endogenous retirement
 - household heterogeneity in life expectancy
 - Private & social insurance: health insurance & social security